
Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

Learning how to
Learn Learning
Algorithms

NNAISENSE

Jürgen Schmidhuber
You_again Shmidhoobuh

Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP etc:
J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning how to
learn: The meta-meta-…hook. Diploma thesis, TU Munich. 1st concrete design of recursively
self-improving AI (RSI), trying to make a first step towards superintelligence. Reinforcement-

learn to improve learning algorithm itself, and also the meta-learning algorithm, etc…

http://people.idsia.ch/~juergen/diploma.html

http://people.idsia.ch/~juergen/metalearner.html

“True” Learning to
Learn (L2L) is not just

transfer learning!
Even a simple

feedforward NN can
transfer-learn to learn

new images faster
through pre-training
on other image sets

True L2L is not just
about learning to
adjust a few hyper-
parameters such as
mutation rates in
evolution strategies
(e.g., Rechenberg &
Schwefel, 1960s)

Radical L2L is about
encoding the initial

learning algorithm in
a universal language

(e.g., on an RNN),
with primitives that
allow to modify the

code itself in arbitrary
computable fashion

Then surround this
self-referential, self-
modifying code by a
recursive framework
that ensures that
only “useful” self-
modifications are
executed or survive
(RSI)

http://www.idsia.ch/~juergen/rnn.html

Looks a bit like supervised L2L but is not yet: Separation of Storage and
Control for NNs: End-to-End Differentiable Fast Weights (Schmidhuber,
1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981)

With Hochreiter (1997), Gers (2000), Graves, Fernandez, Gomez, Bayer…

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now

http://www.idsia.ch/~juergen/rnn.html

Ex-PhD students (TUM & IDSIA)
Sepp Hochreiter (PhD 1999), Felix

Gers (PhD 2001, forget gates for
recurrent units), Alex Graves (e.g.,

CTC, PhD 2008), Daan Wierstra
(PhD 2010), Justin Bayer (2009,

evolving LSTM-like architectures)

 But few would say that LSTM
by itself is a metalerner!

Today’s LSTM has fast weights in
the forget gates! LSTM shaped by:

LSTM cell

2015: Dramatic improvement of
Google's speech recognition
through LSTM & CTC (2006), now
on 2 billion Android phones. Similar
for Microsoft. 2016: LSTM on
almost 1 billion Apple iPhones, e.g.,
Siri. 2016: Google's greatly
improved Google Translate uses
LSTM; also Amazon’s Echo. 2017:
Facebook uses LSTM for over 4
billion translations each day

Otherwise this would also be
metalearning: Almost 30% of the
awesome computational power for
inference in all those Google
datacenters is used for LSTM
(Jouppi et al, 2017); 5% for CNNs.

LSTM / CTC
also used by

1992-1993:
Gradient-based
meta-RNNs that can
learn to run their own
weight change
algorithm, e.g.: J.
Schmidhuber. A self-
referential weight
matrix. ICANN 1993.
Based on TR at U
Colorado, 1992.

An RNN, but no LSTM yet. In 2001, however, Sepp Hochreiter taught a meta-LSTM
to learn a learning algorithm for quadratic functions that was faster than backprop

1993: More elegant
Hebb-inspired

addressing to go
from (#hidden) to

(#hidden)2 temporal
variables: gradient-
based RNN learns
to control internal

end-to-end
differentiable
spotlights of

attention for fast
differentiable

memory rewrites –
again fast weights

Schmidhuber,
ICANN 1993:
Reducing the ratio
between learning
complexity and
number of time-
varying variables in
fully recurrent nets.

Similar NIPS 2016
paper by Ba et al.
See I. Schlag at
NIPS Metalearning
Symposium 2017!

slow network

fast network

New fast
weight
addressing
scheme:
Imanol
Schlag @
NIPS Meta-
learning
Workshop
2017

2005:
Reinforcement-

Learning or
Evolving RNNs

with Fast Weights

Robot learns to
balance 1 or 2 poles
through 3D joint

http://www.idsia.ch/~juergen/evolution.html

Gomez & Schmidhuber:
Co-evolving recurrent
neurons learn deep
memory POMDPs.
GECCO 2005

http://www.idsia.ch/~juergen/firstdeeplearner.html

Useful concept of 1991-92:
compress or collapse or
distill or clone one NN into
another (now widely used)

Neural history compressor: unsupervised pre-
training of RNN stack or hierarchy; chunker

RNN gets compressed into automatizer RNN
which is also re-trained on previous skills

J. Schmidhuber. On
learning how to learn
learning strategies.
TR FKI-198-94, 1994.

Success-story algorithm (SSA) for
self-modifying code (since 1994)

R(t)/t <
[R(t)-R(v1)] / (t-v1) <
[R(t)-R(v2)] / (t-v2) <…

R(t): Reward until time t. Stack of
past check points v1v2v3 … with
self-mods in between. SSA
undoes selfmods after vi that are
not followed by long-term reward
acceleration up until t (now):

1997: Lifelong
meta-RL with self-
modifying policies
and success-story
algorithm: 2
agents, 2 doors, 2
keys. 1st
southeast wins 5,
the other 3.
Through recursive
self-modifications
only: from
300,000 steps per
trial down to
5,000.

Universal problem solver Gödel machine
uses self reference trick in a new way

Kurt Gödel, father of theoretical computer
science and of AI theory, exhibited the
limits of math and computation and AI

(1931) by creating a formula that speaks
about itself, claiming to be unprovable by a

computational theorem prover: either
formula is true but unprovable, or math is

flawed in an algorithmic sense

Gödel Machine (2003):
agent-controlling program
that speaks about itself,
ready to rewrite itself in
arbitrary fashion once it
has found a proof that the
rewrite is useful, given a
user-defined utility function

Theoretically optimal
self-improver!

goedelmachine.com

Initialize Gödel Machine
by Marcus Hutter‘s

asymptotically fastest
method for all well-

defined problems

Given f:X→Y and x∈X, search proofs to find
program q that provably computes f(z) for all

z∈X within time bound tq(z); spend most time
on f(x)-computing q with best current bound

IDSIA
2002

on my
SNF

grant

n3+101000=n3+O(1)

As fast as fastest
f-computer, save
for factor 1+ε and
f-specific const.
independent of x!

PowerPlay not only solves but also continually
invents problems at the borderline between what's

known and unknown - training an increasingly
general problem solver by continually searching for

the simplest still unsolvable problem

https://www.youtube.com/watch?v=OTqdXbTEZpE
Continual curiosity-driven skill
acquisition from high-dimensional
video inputs for humanoid robots.
Kompella, Stollenga, Luciw,
Schmidhuber. Artificial Intelligence,
2015

Mit M Stollenga, K Frank, J Leitner, L Pape, A Foerster, J Koutnik

now talking to investors

neural networks-based
artificial intelligence

http://people.idsia.ch/~juergen/erc2017.html www.nnaisense.com

1.  Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.)

2.  Schmidhuber. A self-referential weight matrix. ICANN 1993. Based on TR CU-
CS-627-92, Univ. Colorado, 1992. (Supervised gradient-based RSI.)

3.  Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994. (RL)
4.  Schmidhuber and J. Zhao and M. Wiering. Simple principles of metalearning. TR

IDSIA-69-96, 1996. (Meta-RL and RSI based on 3.)
5.  Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with self-modifying

policies. In Learning to learn, Kluwer, pages 293-309, 1997. (Meta-RL based on 3.)
6.  Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story

algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning
28:105-130, 1997. (Partially based on 3.)

7.  Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-Improvers.
In Artificial General Intelligence, p. 119-226, 2006. (Based on TR of 2003.)

8.  T. Schaul and Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
9.  More under http://people.idsia.ch/~juergen/metalearner.html

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

Learning how to
Learn Learning
Algorithms:
Extra Slides

NNAISENSE

 1990s: Predictability Minimization: 2 unsupervised nets
fight in minimax game to model a given data distribution

Encoder maximizes
objective minimized
by predictor. Saddle
point = ideal factorial
code. Next: similar
for Reinforcement
Learning!

 1997-2002: What’s interesting? Exploring the predictable
http://people.idsia.ch/~juergen/interest.html

Two reinforcement learning adversaries called "left brain" and "right brain”
are intrinsically motivated to outwit or surprise the other by proposing an
experiment such that the other agrees on the experimental protocol but
disagrees on the predicted outcome, which is an internal abstraction of

complex spatio-temporal events generated through the execution the self-
invented experiment. After execution, the surprised loser pays a reward to the
winner in a zero sum game. This motivates the two brain system to focus on
the “interesting'' things, losing interest in boring aspects of the world that are
consistently predictable by both brains, as well as seemingly random aspects

of the world that are currently still hard to predict by any brain. This type of
artificial curiosity can help to speed up the intake of external reward.

Super-deep program learner:
Optimal Ordered Problem Solver
OOPS (Schmidhuber, MLJ, 2004,
extending Levin’s universal
search, 1973)

Time-optimal incremental search
and algorithmic transfer learning
in program space

Branches of search tree are
program prefixes

Node-oriented backtracking
restores partially solved task sets
& modified memory components
on error or when ∑ t > PT

61 primitive instructions operating
on stack-like and other internal
data structures. For example:

push1(), not(x), inc(x), add(x,y),
div(x,y), or(x,y), exch_stack(m,n),
push_prog(n), movstring(a,b,n),
delete(a,n), find(x), define
function(m,n), callfun(fn),
jumpif(val,address), quote(),
unquote(),
boost_probability(n,val) ….

Programs are integer sequences;
data and code look the same;
makes functional programming
easy

Towers of Hanoi: incremental solutions
•  +1ms, n=1: (movdisk)
•  1 day, n=1,2: (c4 c3 cpn c4 by2 c3 by2 exec)
•  3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
•  4 days: n=4, n=5, …, n=30: by same double-recursive program
•  Profits from 30 earlier context-free language tasks (1n2n): transfer learning
•  93,994,568,009 prefixes tested
•  345,450,362,522 instructions
•  678,634,413,962 time steps
•  longest single run: 33 billion steps (5% of total time)! Much deeper than

recent memory-based “deep learners” …
•  top stack size for restoring storage: < 20,000

What the found Towers of Hanoi solver does:
•  (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
•  Prefix increases P of double-recursive procedure:

Hanoi(Source,Aux,Dest,n): IF n=0 exit; ELSE BEGIN
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest;
Hanoi(Aux,Source,Dest,n-1); END

•  Prefix boosts instructions of previoulsy frozen program, which happens to
be a previously learned solver of a context-free language (1n2n). This
rewrites search procedure itself: Benefits of metalearning!

•  Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11

•  Suffix probability without prefix execution: 4*10-14

•  That is, Hanoi does profit from 1n2n experience and incremental learning
(OOPS excels at algorithmic transfer learning): speedup factor 1000

J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning
with Recurrent Controller & Recurrent World Model

Learning
and
planning
with
recurrent
networks

RNNAIssance
2014-2015

On Learning to
Think: Algorithmic

Information
Theory for Novel
Combinations of

Reinforcement
Learning RNN-

based Controllers
(RNNAIs) and

Recurrent Neural
World Models

http://arxiv.org/abs/1511.09249

