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MOTIVATION

Neural Networks require optimisation to become useful.

The success of a neural network after optimisation is determined by the
joint tuning of
Model architecture
* Data optimised over tuneable knobs are

* Details of optimisation hyperparameters

The correct hyperparameters are crucial to success.

Machine learning includes tuning hyperparameters: expensive, slow.
Biases our model selection to favour tuneable algorithms.

Reinforcement Learning (RL) Is highly non-stationary, requires non-
stationary hyperparameters.
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SEQUENTIAL OPTIMISATION

A long time
Performance
Hyperparametersﬁ,_u | O-»O | OI—:O I %I
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Training
Model

Automate with Bayesian optimisation:

GP-UCB [Srinivas '09], TPE [Bergstra "I | ], Spearmint [Snoek " 2], SMAC [Hutter '| |]
Speed up process [Gyorgy '| |, Agarwal "I |, Sabharwal "1 6, Swersky "I 3, Swersky ' [ 4,
Domhan "I 5, Klein " 6, Snoek "I 5, Springenberg '| 6] or use parallel bandits [Li "| 6].
Lead to SOTA performance e.g. language models [Melis | /]

Or genetic algorithmes:

[Young "1 5, Whiteson ‘06, Miikkulainen "I |, Schmidhuber]
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RANDOM SEARCH
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RANDOM SEARCH
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Single training run

Unreasonably effective [Bergstra "I 2].
Fasy to parallelise.
Wastes computation on easily identifiable bad hyperparameters.

Still imits to fixed hyperparameters for all of training.
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POPULATION BASED TRAINING (PBT)
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Single training run

Start with random search.
Allow workers to share information.
Workers can exploit for model selection, and explore new hyperparameters.

Genetic algorithm acting on a timescale which allows gradient based learning.
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=D TRAINING (PBT)

Start with random search.
Randomly initialise model welights.

Randomly inrtialise hyperparameters from
a prior distribution
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POPULATION BASED TRAINING (PBT)
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Allow training for enough steps for learning to occur.
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POPULATION BASED TRAINING (PBT)
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Exploit: each worker compares its performance to the population. If
bad, then inherit the partial solution from a better worker (e.g. copy
the model and hyperparameters).

* Binary tournament — random opponent, better model wins.

* Truncation selection — if in bottom 20% inherit from top 20%.
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POPULATION BASED TRAINING (PBT)
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Explore: mutate the hyperparameters that were inherited to explore
potentially better hyperparameters at this point in training. Mutate
each hyperparameter independently.

* Perturb current value randomly by factor of e.g. 20%.

* Resample from the initial prior distribution defined.
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POPULATION BASED TRAINING (PBT)
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Step: perform steps of regular gradient-based training.
Exploit: if worker is bad, then inherit better partial model.

Explore: mutate the hyperparameters that were inherited.

Repeat.
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TOY EXAMPL
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POPULATION BASED TRAINING (PBT)
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Combines local optimisation with gradients with model selection and
hyperparameter refinement. lwo-timescale learning system.

Exploit can optimise for non-differentiable & expensive metrics.
Allows online adaptation of hyperparameters.

Asynchronous and very easy to Iintegrate with existing pipelines.
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EXPERIMENTS

Demonstrate on a range of domains.
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Learning

Speeds up learning, can use less computational resources, better final
performance.
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UNREAL ON DM LAB

UNREAL [Jaderberg '16] on DeepMind Lab 3D environments.
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UNREAL ON DM LAB
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UNREAL ON DM LA

Agent View

Top Down View
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FUN ON ATARI

Feudal Networks (FuN) [Vezhnevets '1 6] on Atari environments.
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MACHINE TRANSLATION

Transformer Networks [Vaswani ' 7] for WMT English-German.
Optimise for BLEU score directly.
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GENERATIVE ADVERSARIAL NETWORKS

DCGAN architecture [Radford '16] on CIFAR-10.
Optimise for Inception score directly. Discriminator

LR annealed
aggressively
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GAN population development
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ALGORITHM ANALYSIS

Atari
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Improvement over normalised baseline

Smaller population size
means higher variance
results due to greedy
algorithm.
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ALGORITHM ANALYSIS
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ALGORITHM ANALYSIS
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Improvement over normalised baseline

Smaller population size
means higher variance
results due to greedy
algorithm.
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CONCLUSIONS

FuN population development

Algorithm for joint optimisation of model and

hyperparameters
+  Online adaptation of hyperparameters.
- Model selection by weight inheritance.
- Easy to integrate with existing training code.

Enhances training across many domains
+ Improves performance of final models found. —
, 1000 2000 3000 40.00 5000 6000 7000 8000 9000
- Does not change the wall clock time for final results. ClidsEie e dncyan]
- (Can reduce the computational resources required.
+  Good for new unfamiliar models.
- Adapts to non-stationary training problems.

+  Optimise indirect performance metrics.

Future work with PBT
- Better exploit the population in non-greedy way.
- Better explore in hyperparameter space, e.g. online
modelling, crossover.
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