
POPULATION BASED TRAINING
OF NEURAL NETWORKS

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojtek Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning,

Karen Simonyan, Chrisantha Fernando, Koray Kavukcuoglu

7th December 2017, NIPS Metalearning Symposium

MOTIVATION

Neural Networks require optimisation to become useful.

The success of a neural network after optimisation is determined by the
joint tuning of

• Model architecture
• Data optimised over
• Details of optimisation

The correct hyperparameters are crucial to success.

Machine learning includes tuning hyperparameters: expensive, slow.
Biases our model selection to favour tuneable algorithms.

Reinforcement Learning (RL) is highly non-stationary, requires non-
stationary hyperparameters.

Population Based Training

} tuneable knobs are
 hyperparameters

SEQUENTIAL OPTIMISATION

Population Based Training

SEQUENTIAL OPTIMISATION

Loss? Or validation set loss?
Or other related metric?

Population Based Training

SEQUENTIAL OPTIMISATION

Population Based Training

Choose new
hyperparameters

SEQUENTIAL OPTIMISATION

Population Based Training

SEQUENTIAL OPTIMISATION

A long time

Population Based Training

SEQUENTIAL OPTIMISATION

A long time

Automate with Bayesian optimisation:
GP-UCB [Srinivas ’09], TPE [Bergstra ’11], Spearmint [Snoek ’12], SMAC [Hutter ’11]
Speed up process [Gyorgy ’11, Agarwal ’11, Sabharwal ’16, Swersky ’13, Swersky ’14,
Domhan ’15, Klein ’16, Snoek ’15, Springenberg ’16] or use parallel bandits [Li ’16].
Lead to SOTA performance e.g. language models [Melis ’17]
Or genetic algorithms:
[Young ’15, Whiteson ’06, Miikkulainen ’11, Schmidhuber]

Population Based Training

RANDOM SEARCH

Single training run

Choose the best

Population Based Training

RANDOM SEARCH

Single training run

Choose the best

Unreasonably effective [Bergstra ’12].
Easy to parallelise.
Wastes computation on easily identifiable bad hyperparameters.
Still limits to fixed hyperparameters for all of training.

Population Based Training

POPULATION BASED TRAINING (PBT)

Start with random search.
Allow workers to share information.
Workers can exploit for model selection, and explore new hyperparameters.

Genetic algorithm acting on a timescale which allows gradient based learning.

Population Based Training

POPULATION BASED TRAINING (PBT)

Start with random search.
Randomly initialise model weights.
Randomly initialise hyperparameters from
a prior distribution

Population Based Training

POPULATION BASED TRAINING (PBT)

Allow training for enough steps for learning to occur.

Population Based Training

POPULATION BASED TRAINING (PBT)

Exploit: each worker compares its performance to the population. If
bad, then inherit the partial solution from a better worker (e.g. copy
the model and hyperparameters).

• Binary tournament — random opponent, better model wins.
• Truncation selection — if in bottom 20% inherit from top 20%.

Population Based Training

POPULATION BASED TRAINING (PBT)

Explore: mutate the hyperparameters that were inherited to explore
potentially better hyperparameters at this point in training. Mutate
each hyperparameter independently.

• Perturb current value randomly by factor of e.g. 20%.
• Resample from the initial prior distribution defined.

Population Based Training

POPULATION BASED TRAINING (PBT)

Step: perform steps of regular gradient-based training.

Exploit: if worker is bad, then inherit better partial model.

Explore: mutate the hyperparameters that were inherited.

Repeat.
Population Based Training

TOY EXAMPLE

Population Based Training

POPULATION BASED TRAINING (PBT)

Combines local optimisation with gradients with model selection and
hyperparameter refinement. Two-timescale learning system.

Exploit can optimise for non-differentiable & expensive metrics.
Allows online adaptation of hyperparameters.

Asynchronous and very easy to integrate with existing pipelines.
Population Based Training

EXPERIMENTS

Demonstrate on a range of domains.

Population Based Training

Deep RL Supervised
Learning

GANs

Speeds up learning, can use less computational resources, better final
performance.

UNREAL ON DM LAB

UNREAL [Jaderberg ’16] on DeepMind Lab 3D environments.

Population Based Training

Automatic
learning rate
decay

UNREAL ON DM LAB

Population Based Training

Discovers unroll
length outside
initial
distribution

UNREAL ON DM LAB

Population Based Training

Discovers unroll
length outside
initial
distribution

FUN ON ATARI

Population Based Training

Auto optimise
the intrinsic
reward

Feudal Networks (FuN) [Vezhnevets ’16] on Atari environments.

MACHINE TRANSLATION

Population Based Training

Discovers hand
designed
learning rate
schedule

Transformer Networks [Vaswani ’17] for WMT English-German.
Optimise for BLEU score directly.

GENERATIVE ADVERSARIAL NETWORKS

Population Based Training

Discriminator
LR annealed
aggressively

DCGAN architecture [Radford ’16] on CIFAR-10.
Optimise for Inception score directly.

Generator LR
annealed slower

Population Based Training

Population Based Training

ALGORITHM ANALYSIS

Population Based Training

Smaller population size
means higher variance
results due to greedy
algorithm.

ALGORITHM ANALYSIS

Population Based Training

Smaller population size
means higher variance
results due to greedy
algorithm.

PBT on weights and
hyperparameters are
crucial to best
performance.

ALGORITHM ANALYSIS

Population Based Training

Smaller population size
means higher variance
results due to greedy
algorithm.

PBT on weights and
hyperparameters are
crucial to best
performance.

Adaptation of
hyperparameters
better than using best
found
hyperparameters

CONCLUSIONS

Population Based Training

Algorithm for joint optimisation of model and
hyperparameters

• Online adaptation of hyperparameters.
• Model selection by weight inheritance.
• Easy to integrate with existing training code.

Enhances training across many domains
• Improves performance of final models found.
• Does not change the wall clock time for final results.
• Can reduce the computational resources required.
• Good for new unfamiliar models.
• Adapts to non-stationary training problems.
• Optimise indirect performance metrics.

Future work with PBT
• Better exploit the population in non-greedy way.
• Better explore in hyperparameter space, e.g. online

modelling, crossover.

QUESTIONS?

