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AutoML and Meta-Learning
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Current deep learning practice
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AutoML as Blackbox Optimization
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Effectiveness of Bayesian Optimization
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“Sometimes, BayesOpt is only twice as fast as Random Search”
* But sometimes it is dramatically faster
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optimization = 20x speedup
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Example: Optimizing a deep feedforward net on dataset adult, 7 hyperparameters



Effectiveness of Bayesian Optimization
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20x speedup

Random search

200x speedup

Bayesian optimization
(SMAC)

102 103 10*  10°
Configuration Budget [sec]

Example: Optimizing CPLEX on combinatorial auctions (Regions 100), 76 hyperparameters 5
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Same Pattern Occurs in RL vs. Random Search

e—e Top 1 unique models
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Improvement of RL vs. random search (perplexity)
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Up to 1200 function evaluations: RL not better than Random Search

Figure taken from , Neural Architecture Search by Reinforcement Learning”, Zoph & Le
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AutoML as Blackbox Optimization
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4 Random search,
evolutionary methods,
reinforcement learning,

Too slow for big data

Bayesian optimization
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AutoML systems

ways to go beyond
blackbox optimization




Benchmark: AutoML Challenge
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e Large-scale challenge run by ChalLearn & Codalab
— 17 months, 5 phases with 5 new datasets each (2015-2016)
— 2 tracks: code submissions / Kaggle-like human track

* Code submissions: true end-to-end learning necessary
— Get training data, learn model, make predictions for test data
— 1 hour end-to-end

e 25 datasets from wide range of application areas
— Already featurized
— Inputs: features X, targets y



AutoML System 1: Auto-WEKA
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g [Thornton, Hutter, Hoos, Leyton-Brown, KDD 2013; Kotthoff @ .-r-\ LR 2016]
-l?!
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Available in WEKA package manager; ~400 downloads/week

— Parameterize ML framework: WEKA [Witten et al, 1999-current]

» 27 base classifiers (with up to 10 hyperparameters each)
* 2 ensemble methods; in total: 786 hyperparameters

— Optimize CV performance by Bayesian optimization (SMAC)

1 Only evaluate more folds for good configurations
—® - S5xspeedups for 10-fold CV .
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4 AutoML System 2: Auto-sklearn
2o [Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter; NIPS 2015]
Meta-level o
@« P - IeaTrn.ing.& —> Iglarl;[\_
N optimization

e Optimize CV performance by SMAC . = Z m,
1=1

Meta-learning to warmstart Bayesian optimization

Z& * Reasoning over different datasets
* Dramatically speeds up the search (2 days — 1 hour)

Automated posthoc ensemble construction
to combine the models Bayesian optimization evaluated

@ e Efficiently re-uses its data; improves robustness
11



Auto-sklearn: Ready for Prime Time
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— Auto-track: overall winner, 1%t place in 3 phases, 2" p K 1
. . . e ?
* Close competitor: variant of automatic statistician [Lloyd et al] ’:.53,

— Final two rounds: won both tracks

https://github.com/automl/auto-sklearn

o © Watch 121 % Star | 1,638 ¥ Fork = 298
* Trivial to use:

import autosklearn.classification as cls
automl = cls.AutoSklearnClassifier()
automl.fit(X train, y_train)

y _hat = automl.predict(X test)
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AutoML System 3: Auto-Net

Meta-level
- learning & Deep
- optimization neural net
N—’ A |

k
* CV performance optimized by SMAC . = Z m
1=1

* Joint optimization of:
— Network architecture

— Hyperparameters
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Auto-Net in AutoML Challenge

[Mendoza, Klein, Feurer, Springenberg & Hutter, AutoML 2016]
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* Featurized data — fully-connected network
— Up to 5 layers (with 3 layer hyperparameters each)
— 14 network hyperparameters, in total 29 hyperparameters
— Optimized for 18h on 5GPUs

* Auto-Net won several datasets against human experts

— E.g., Alexis data set: 10

e 54491 data points,
5000 features, 18 classes

AutoNet

— First automated deep learning .
system to win a ML competition ..
data set against human experts

14



Using Cheap Approximations of the Blackbox
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Reasoning across subsets of the data
@ — Up to 1000x speedups [Klein et al, AISTATS 2017]

Log Validation error at 5 Log Validation error at 2z

log(C)
log(©)

5 Reasoning across

< training epochs
[Swersky et al, arXiv 2014]
[Domahn et al, IJCAI 2015]
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Hyperband & Successive Halving
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e Successive Halving [Jamieson & Talwalkar, AISTATS 2015]
— Run N (=many) configurations for a small budget B

— |teratively:
Select best half of configurations and double their budget

 Hyperband [Lietal, ICLR 2017]

— Calls Successive Halving iteratively with
different tradeoffs of N and B
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§ Hyperband vs. Random Search
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Biggest advantage: much improved anytime performance

Auto-Net on dataset adult
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§ Bayesian Optimization vs. Random Search
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Biggest advantage: much improved final performance

Auto-Net on dataset adult
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4 Combining Bayesian Optimization & Hyperband
EE [Falkner, Klein & Hutter, BayesOpt 2017]

10~

20x speedup —&— RS

—— TPE

HB

510~
o’
50x speedup
10_3 : : T Ly =

10" 10! 10? 10° 10* 10° 10°

wall clock time [

Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult
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4 Almost Linear Speedups By Parallelization
EE [Falkner, Klein & Hutter, BayesOpt 2017]

8 parallel workers
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Auto-Net on dataset adult
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Tuning CNNs on a Budget: CIFAR-10

[Falkner, Klein & Hutter, BayesOpt 2017]
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* Six design decisions
— Depth, widening factor
— Learning rate, batch size, weight decay, momentum

 Maximum budget per CNN run: 2 hours on a Titan X
— Ran BO-HB for 12 hours on 10 GPUs
— Result: 4% test error

 Maximum budget per CNN run: 3 hours on a Titan X
— Ran BO-HB for 12 hours on 10 GPUs
— Result: 3.5% test error
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[Chen et al, 2015;
Wei et al, 2016;
Cai et al, 2017]
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Cosine annealing

[Loshchilov & Hutter, 2017]
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Neural Architecture Search on a Budget
[Elsken, Metzen & Hutter, MetaLearn 2017]

Online Adaptation of Architecture & Hyperparams
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modelpest
perf. = 0.90

Result: architecture search in 12 hours on 1 GPU: 5.7% on CIFAR-10
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Conclusion

e Bayesian optimization enables true end-to-end learning
— Auto-WEKA, Auto-sklearn & Auto-Net

_. Meta-level ] -
learning & | —> | -S3TNINE
N~ = . g. box
N optimization
——’ A |

* Large speedups by going beyond blackbox optimization

— Learning across datasets

— Learning across data subsets & epochs

— Combination of Hyperband and Bayesian optimization
— Online adaptation of architectures & hyperparameters

* Links to code: http://automl.org
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http://ml4aad.org/
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Thanks!
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